If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+32x=11
We move all terms to the left:
4x^2+32x-(11)=0
a = 4; b = 32; c = -11;
Δ = b2-4ac
Δ = 322-4·4·(-11)
Δ = 1200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1200}=\sqrt{400*3}=\sqrt{400}*\sqrt{3}=20\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-20\sqrt{3}}{2*4}=\frac{-32-20\sqrt{3}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+20\sqrt{3}}{2*4}=\frac{-32+20\sqrt{3}}{8} $
| 20y-y^2-3500=0 | | 11x+15=191 | | (2x+2)/4+4=24 | | −12+2t= −14−14 | | (13x+19)=(9x+7) | | 20x-x^2=3500 | | 8^t=6 | | -7=(-3-(-5x))/(2+3x) | | -5.6e+12.9=-1.3 | | 2x+3/7x+1=7/15 | | 7x+x=52 | | x+3x+(3x-3)=95 | | 6v–14=3v+5 | | -2q= | | 4=2+x/3 | | 20=d/4 | | 18+9x=4+7x | | 2x+4x+4=52 | | 56c+34=1112. | | x-19=x+69 | | 3c=c+9 | | r^2+18r-43=0 | | -(2x5)-1=2(x+1) | | 4x×x=1024 | | -5x-(6-x)=3x+3 | | 5(x-1)-4x=0 | | 7x+14=-63 | | 6/7a–12=3/14a+15 | | 14v+7=7 | | 5x-4=2x-20 | | (4c+6)=–(2c+5) | | x^2+3x-71=0 |